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ABSTRACT

The observation of small biological particles in 3D flu-
orescence microscopy faces challenges due to resolution
anisotropy and partial fluorescent labeling. A solution to
address these issues consists in combining multiple acquisi-
tions of individual particles. The detection of these single
particles within each acquired volume is of utmost impor-
tance. A significant drawback of deep learning methods in
this context is the substantial requirement for manually an-
notated training data. In response, we propose a particle
detection pipeline for 3D data based on few-shot learning. It
generalizes a 2D method based on the principle of positive-
unlabeled learning. Our experiments with synthetic and real
fluorescence-microscopy data demonstrate that our approach
achieves high detection rates even with a limited amount of
training data.

Index Terms— Particle picking, detection, few shot
learning, 3D fluorescence microscopy

1. INTRODUCTION

Fluorescence microscopy is a fundamental observation tool
for understanding cellular mechanisms. 3D fluorescence im-
ages are obtained by exciting fluorophores that bind around
a protein of interest. However, the resolution is highly
anisotropic, and the fluorophores do not completely and
uniformly cover the targeted particles. A single image gives
only a partial view of the actual structure of cellular objects.
Single particle reconstruction relies on the acquisition of
images containing a large number of isolated, randomly ori-
ented copies of the same particle, which are detected and then
combined to reconstruct a 3D model. This method greatly
improves resolution and compensates for the inhomogeneity
of fluorophore distribution in the input data. The first step in
a reconstruction is the detection of isolated particles in the
acquired images, also called ”particle picking” in microscopy
(Fig. 1). The reconstruction quality is highly dependent on
the success of the detection step. Noise and parasitic struc-
tures in the images make conventional detection methods
ineffective. Only few learning methods dedicated to this task
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Fig. 1. Detection of single particles by 3D fluorescence mi-
croscopy on data described in [4].

in fluorescence microscopy, mainly in 2D or requiring nu-
merous training examples [1, 2, 3]. In practice, the detection
of hundreds of particles in 3D images is performed manually,
a tedious task prone to bias, limiting the number of particles
picked.

Automatic deep learning detection methods have recently
been applied to fluorescence microscopy images. In [1, 2],
the authors employ 2D detection techniques using Convo-
lutional Neural Networks (CNNs). Consequently, these ap-
proaches overlook the rich volumetric information present in
3D microscopy images. In contrast, Spilger et al. propose a
fully 3D detection method in [3], but it relies on numerous
weak annotations, making it not suitable for noisy situations
and more complex objects like centrioles which are often ob-
served in pairs. Deep learning detection methods have also
been developed for another acquisition modality called cryo-
electron microscopy [5], but most of them require the creation
of a large labeled dataset, which limits their use in practice.
In 2019, Bepler et al. [6] proposed a new method enabling



weakly supervised deep learning for particle detection based
on the principle of Positive-Unlabelled learning. It is spe-
cific to 2D images and requires hundreds of training exam-
ples. A straightforward implementation of Bepler’s method
in 3D fails since the positive label proportion is significantly
lower in 3D than in 2D. In this paper, we propose a com-
plete and robust processing pipeline for particle detection in
3D fluorescence imaging. In addition to the idea of [6], we in-
troduce three main steps necessary to process 3D fluorescence
data. Firstly, image regions of interest are segmented. Train-
ing on these regions of interest is then stabilized by stochastic
weight averaging. Finally, a post-processing that improves
on the usual non-maximum suppression yields centered pre-
dictions, with no false positives. To achieve an F1-score of
0.85, conventional training requires 500 examples, while our
model requires 10. The code will soon be available on a Git-
lab repository .

2. METHOD

2.1. Positive-Unlabelled learning by batch

Positive-Unlabelled (PU) learning relies on a priori knowl-
edge of the proportion of positive elements in the whole im-
age to guide detection. Let us denote P the small portion of
the image labeled as positive, U the rest of the unlabeled im-
age and π the proportion of positive elements in U . So we
are looking for an estimator g minimizing Ex∼P(L(g(x), 1))
under the constraint Ex∼U (g(x)) = π (where L is the cross
entropy) [7]. As the estimator here is a neural network trained
by stochastic gradient descent, the cost function will not be
calculated exactly, but estimated from a subset (batch) of data.
The distribution of k positive elements in a batch follows a bi-
nomial distribution p(k) and the g estimator must then also
describe a binomial distribution q(k) over these k positive
elements. To impose the constraint Ex∼U (g(x)) = π, we
can therefore seek to minimize the cross-entropy between the
q(k) and p(k) distributions, so that the cost function becomes

Ex∼P(L(g(x), 1) + λ

n∑
k=1

q(k) log(p(k)) (1)

This function allows us to apply the principle of Positive-
Unlabelled learning in the context of stochastic gradient de-
scent. It is the one proposed by [6] and which we will use.

2.2. Particle detection method

We perform detection by classifying a 3D sliding window
that moves over the image with a certain step size. Indeed,
while current detection methods are based on neural networks
processing the whole image, this approach is not applicable
to large 3D images from fluorescence microscopy (typically
100× 1000× 1000 voxels).

(a) (b)

Fig. 2. Example of segmentation of regions of interest. (a)
Real data. (b) Segmented region of interest (white).

Region of interest selection In single particle reconstruc-
tion, we know the size of the particle we want to detect. More-
over, for a given acquisition protocol, it is possible make a
coarse estimation of the total number of particles in each im-
age, so that the proportion of positive voxels πratio in each
image is approximately known, which enables the use of PU
learning. For an image with D = d×h×w voxels and com-
prising k particles of radius r, πratio = k

D
4
3πr

3. To guarantee
this ratio while having at least one positive element in a mini-
batch, we need a minimum mini-batch size of ⌈1/πratio⌉. In
practice, this minimum size is of the order of 103 or even 104,
which requires a very large memory capacity and prevents the
method from being implemented. Since 3D fluorescence mi-
croscopy images of single particles are predominantly made
up of background (see Fig. 1), we propose to restrict the
search to a region of interest, sufficiently selective to signif-
icantly increase the πratio value and therefore reduce the size
of the mini-batchs, while retaining the particles. In the con-
text of noisy 3D images with numerous artefacts, elementary
segmentation methods, typically using simple thresholding,
fail to achieve such a trade-off. We achieve this by correct-
ing the histogram, followed by estimating a mixture of two
Gaussians. We then erode the resulting segmentation map to
eliminate artifacts, and apply a morphological opening to pre-
serve an extended area around the particles (see Fig. 2). This
procedure results in a region of interest sufficiently restricted
to obtain a correct mini-batch size (typically of the order of
102). This procedure is applied both before training and dur-
ing prediction.

Stochastic weight averaging When a real distribution is es-
timated from few examples, the estimator’s ability to gener-
alize depends strongly on the choice of examples. Thus, af-
ter selecting the region of interest of an image and carrying
out training with few examples, we observed a high variance
in performance: for 10 annotated particles, the F1-score var-
ied between 0.6 and 0.9 (see Fig. 5). To counter this phe-
nomenon, it is useful to average the estimates. For this reason,
we apply stochastic weight averaging (SWA) during training
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Fig. 3. Illustration of the post-processing procedure for 3D
predictions (here projected in 2D for visualization). (a) Pre-
dictions after NMS. (b) Predictions after full post-processing.

[8]. Two models are considered: the first (wSWA) stores the
current weight averaging and will be the final model used for
predictions, the second (w) explores the weight space with
a cyclic learning rate, so that each cycle results in a unique
local minimum. At the end of each cycle, the weights are up-
dated according to an exponential moving averaging scheme.
The resulting model represents a flatter error minimum, and is
therefore more amenable to generalization. For 10 particles,
with SWA, the F1-score is between 0.85 and 0.88.

Post-processing Sliding window detection results in a large
number of predictions for the same particle. Such predic-
tions are usually filtered using the non-maximum suppression
(NMS) algorithm, but the latter is not very effective in the
case of noisy 3D data, with close objects and lots of arti-
facts. Although false positives after NMS correspond mainly
to predictions close to particles, they are nonetheless trouble-
some for reconstruction. Since the predictions obtained after
NMS are globally centered around a particle, we propose to
spatially average overlapping predictions, then recenter these
overlapping predictions on their center of mass. Finally, due
to noise and numerous artifacts, some predictions are far from
particles, but these correspond to low-intensity areas in the
image and can therefore be eliminated by filtering them via
the Otsu method after locally correcting the image histogram
(contrast limited adaptive histogram equalization, CLAHE).

Quantitatively, for 60 particles on real data, our method
reduces the number of false positives from 200 to 5, without
introducing any false negatives (see Fig. 3).

2.3. Implementation details

We consider a standard learning model. The estimator is a
convolutional neural network EfficientNet-b0 [9]. The opti-
mization algorithm is a Stochastic Gradient Descent with mo-
mentum. The learning rate follows a sinusoidal decay. The er-
ror function is that introduced in equation (1). For the recon-
struction step, the windows classified as positive by the model

must contain a single particle. Since particles can be close to
each other, the window size must be approximately equal to
that of a single particle. This small window size imposes a
shallow network depth, since the spatial dimension of the im-
age decreases as one progresses through its layers, to the point
where for windows that are too small, the network becomes
so shallow that it is no longer able to classify correctly. In
the case of the EfficientNet architecture, this spatial reduction
is due to the pitch of the convolutions. We change this pitch
from 2 to 1 in certain convolutional layers. In practice, for a
window size of 243, two layers in the first block are modified.
Finally, when training on such a large dataset, overlearning
is inevitable. We introduce several regularization elements to
counteract this. The data are augmented (random composi-
tion of translations, rotations and dilations). Network weights
are regularized using drop connect and weight decay. In addi-
tion to these standard methods, we apply regularization using
an additional reconstruction task, learned in conjunction with
classification, as proposed by [6]. The weighting between
classification and reconstruction errors is also learned during
learning [10].

3. EXPERIMENTS

To study our method, and in particular to compare it with fully
supervised training, we need a large annotated set. To achieve
this, we generate synthetic data: we use a model of a biolog-
ical particle called a centriole described in [11], and apply to
this model a series of random transformations to generate ro-
tated particles corrupted by the main defects encountered in
fluorescence microscopy acquisitions (anisotropy, noise, arti-
facts). This process results in the creation of several thousand
examples of particles. To asses performance stability, each
training run for a given number of examples is performed 40
times, randomly selecting a set of examples at each time. Fi-
nally, to validate performance on real data, 200 particles were
manually annotated on images from [4].

3.1. Impact of number of annotations

We use the same model (same network, same hyperparame-
ters, same regularizations, same pre- and post-processing), for
two different error functions: a classical cross-entropy (fully
supervised training) and the error function introduced by [6].
The results, summarized in Fig. 4, are as follows: when the
number of annotations is sufficiently large (∼ 103), fully su-
pervised training performs similarly to PU learning; when the
number of annotations decreases, the performance of fully su-
pervised training drops, while our method maintains a stable
high F1-Score. Thus, we observe that for 10 annotated parti-
cles our model achieves a satisfactory F1-score of 0.85, which
is reached with 500 examples for classical training. In exper-
iments on real data we observe the same phenomenon: for 10
annotated particles our method achieves a F1-score of 0.78,
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Fig. 4. Comparison of Positive-Unlabelled (PU) and Fully-
Supervised (FS) training. Statistics on 40 training sessions.

compared with 0.56 for a conventional model.

3.2. Impact of the stochastic weight averaging

Training runs performed on different sets of examples reveal
the impact of stochastic weight averaging (SWA). We com-
pare two configurations, one with SWA and the other with-
out, while keeping all other parameters identical. The num-
ber of examples varies between 5 and 3500. Fig. 5 provides a
summary of the results. The overall performance is enhanced
with SWA: although the results are stable when the number
of examples is in the thousand range, we observe that for ten
examples, the variance and amplitude of the results go from
30% without SWA to less than 5% with SWA. Therefore, the
inclusion of SWA in the model significantly improves perfor-
mance stability.

4. CONCLUSION

We have presented a 3D particle detection method for fluo-
rescence microscopy data, leveraging successful application
of positive-unlabeled learning. The method relies on a first
segmentation step that provides regions of interest, which is
crucial to reduce the proportion of background pixels and en-
able the use of PU learning. The proposed post-processing
of predictions then leads to well-centered detection around
the particles, suitable for subsequent reconstruction. Further-
more, stochastic weight averaging improves the stability of
the results in the context of few-shot learning. Experimental
tests show our model outperforms conventional training, par-
ticularly with fewer than a few hundred annotated particles,
in both synthetic and real datasets.
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Fig. 5. Impact of number of annotations. Comparison with
and without stochastic weight averaging (SWA). Statistics on
40 training sessions
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